If you’ve been wondering what is GLP-1 and how it relates to weight loss, you’re not alone. GLP-1 is a naturally occurring hormone that plays a major role in appetite regulation, blood sugar control, and fullness. It’s also the target of popular weight loss medications like Ozempic and Wegovy.

In this post, we’ll break down exactly what GLP-1 does, how food can help support it naturally, and what to know if you’re thinking about taking a GLP-1 medication.

What Is GLP-1 and Can Food Help You Boost It Naturally?

Infographic explaining GLP-1's roles: fullness, digestion, and blood sugar regulation

GLP-1 (glucagon-like peptide-1) is a hormone your body naturally produces to help regulate blood sugar and appetite.

It plays a major role in:

  • Slowing how quickly food leaves your stomach
  • Helping you feel full longer
  • Reducing blood sugar spikes
  • Supporting fat loss when managed effectively

This hormone is one reason high-protein, whole food diets can feel so satisfying – they naturally help your body release GLP-1.

Thinking About Taking a GLP-1 Medication?

Graphic listing the pros and cons of GLP-1 medications like Ozempic and Mounjaro

Medications like Ozempic, Wegovy, Mounjaro, or Zepbound are synthetic versions of GLP-1 or similar hormones.

They’re often prescribed for type 2 diabetes and weight loss. These medications mimic your body’s natural GLP-1, helping reduce hunger and regulate blood sugar.

Pros:

  • Helps regulate appetite
  • Lowers blood sugar
  • Can result in significant weight loss

Cons:

  • Can lead to muscle loss if protein isn’t prioritized
  • Often regain weight after stopping
  • Can cause digestive issues, nausea, or vomiting
  • Long-term effects are still being studied
  • Often expensive and not always covered by insurance

Can Foods Naturally Promote GLP-1?

Yes, your food choices can help support natural GLP-1 release.

Protein, fat, fiber, and fermented foods can all help your body regulate hunger and blood sugar, especially when paired with healthy habits like strength training and consistent meals.

Foods That Support GLP-1

 Protein-packed foods: salmon, eggs, yogurt, ground beef, tuna, rotisserie chicken

Here are the three key nutrition strategies that naturally support GLP-1:

1. Protein-Rich Foods

Protein slows digestion, helps control appetite, and directly supports GLP-1 secretion through gut stimulation.

Examples:

  • Salmon
  • Eggs
  • Greek yogurt
  • Ground beef
  • Tuna
  • Rotisserie chicken

2. Healthy Fats

Fats delay gastric emptying (how fast food leaves the stomach) and help release other satiety hormones like CCK, extending GLP-1’s effects.

Examples:

  • Avocados
  • Olive oil
  • Cheese
  • Butter
  • Full-fat dairy
  • Tallow

3. Fiber & Fermented Foods

Gut-friendly fibers and fermented foods increase GLP-1 activity by feeding beneficial bacteria and supporting blood sugar regulation.

Examples:

  • Sauerkraut
  • Yogurt
  • Beans
  • Raspberries
  • Blackberries

Natural GLP-1 Hacks

Natural GLP-1 boosters: coffee, yerba mate, ginger, full-fat dairy, green tea

Some natural compounds and food combinations have also been shown to support GLP-1 release or appetite regulation.

Top GLP-1 Boosters:

  • Yerba mate
  • Full-fat dairy
  • Ginger
  • Coffee
  • Green tea
  • Allulose (a rare sugar)

GLP-1 Promoting Meal Plans

Here are two sample meal plans built around foods that support natural GLP-1 production – using real, satisfying ingredients.

Day 1 Meal Plan

Meal plan with eggs, smoked salmon, turkey snack, avocado boats, and squash
  • Breakfast: Eggs, smoked salmon, avocado, butter
  • Lunch: Turkey “pepper-wich”
  • Snack: Avocado halves with salmon salad
  • Dinner: Spaghetti squash caprese with chicken

Day 2 Meal Plan

Second meal plan with sweet potato, roast beef, cucumbers, and taco skillet
  • Breakfast: Sweet potato, avocado, shredded chicken
  • Lunch: Roast beef and boiled eggs
  • Snack: Cream cheese cucumber bites
  • Dinner: Ground beef taco skillet with avocado

Already Taking a GLP-1 Medication? Here’s How to Support Your Body

Infographic with nutrition, movement, and mindset tips for people using GLP-1s

Even if you’re using a GLP-1 medication, the habits you build matter.

To protect your metabolism and muscles, make sure you:

  • Eat at least 100–130g of protein daily
  • Strength train 2–4x/week
  • Stay hydrated and monitor electrolytes
  • Prioritize real food over ultra-processed options
  • Track muscle loss and body comp, not just scale weight
  • Focus on building sustainable routines

Whether you’re using GLP-1 medication or not, your food choices matter.

The goal is never perfection – it’s about finding strategies that make you feel good, keep you full, and help you stay consistent. That’s where real progress comes from.

Need Extra Support?

Screenshot of Best Body app showing meals, check-ins, and coaching

Inside Best Body, you’ll get:

  • Dietitian-approved weight loss plans
  • Meal inspiration that supports hormones like GLP-1
  • Coaching to help you stay consistent
  • 2,000+ high-protein, easy meals
  • A plan that works with your lifestyle

Citations

  1. Holst, J. J. (2007). The physiology of glucagon-like peptide-1. Physiological Reviews, 87(4), 1409–1439. https://doi.org/10.1152/physrev.00034.2006
  2. Zheng, H., Wang, Y., Zhu, J., Yao, Y., Zhang, C., & Gao, Q. (2024). Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduction and Targeted Therapy, 9(1), 234. https://doi.org/10.1038/s41392-024-01637-w
  3. Drucker, D. J., Philippe, J., Mojsov, S., Chick, W. L., & Habener, J. F. (1987). Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proceedings of the National Academy of Sciences, 84(10), 3434–3438. https://doi.org/10.1073/pnas.84.10.3434
  4. Hall, K. D., Ayuketah, A., Brychta, R., et al. (2019). Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metabolism, 30(1), 67–77. https://doi.org/10.1016/j.cmet.2019.05.008
  5. Westerterp-Plantenga, M. S., Nieuwenhuizen, A., Tome, D., Soenen, S., & Westerterp, K. R. (2009). Dietary protein, weight loss, and weight maintenance. Annual Review of Nutrition, 29, 21–41. https://doi.org/10.1146/annurev-nutr-080508-141056
  6. Chaput, J. P., Klingenberg, L., Astrup, A., & Sjödin, A. M. (2011). Modern sedentary activities promote overconsumption of food in our current obesogenic environment. Obesity Reviews, 12(5), e12–e20. https://doi.org/10.1111/j.1467-789X.2010.00772.x
  7. Czeisler, C. A., & Gooley, J. J. (2007). Sleep and circadian rhythms in humans. Cold Spring Harbor Symposia on Quantitative Biology, 72, 579–597. https://doi.org/10.1101/sqb.2007.72.064
  8. Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5(7), 374–381. https://doi.org/10.1038/nrendo.2009.106
  9. Novo Nordisk. (2024). Wegovy® (semaglutide) injection for subcutaneous use: Full prescribing information. https://www.novo-pi.com/wegovy.pdf
  10. Novo Nordisk. (2024). Ozempic® (semaglutide) injection: Full prescribing information. https://www.novo-pi.com/ozempic.pdf
  11. Eli Lilly and Company. (2024). Mounjaro® (tirzepatide) injection: Full prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/215866s000lbl.pdf
  12. Frias, J. P., Davies, M. J., Rosenstock, J., et al. (2020). Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. The New England Journal of Medicine, 385(6), 503–515. https://doi.org/10.1056/NEJMoa2107519
  13. Jastreboff, A. M., Aronne, L. J., Ahmad, N. N., et al. (2022). Tirzepatide once weekly for the treatment of obesity. The New England Journal of Medicine, 387(3), 205–216. https://doi.org/10.1056/NEJMoa2206038
  14. Ryan, D. H., Yockey, S. R., & Apovian, C. M. (2021). Anti-obesity medications and weight loss. Nature Reviews Endocrinology, 17(12), 757–769. https://doi.org/10.1038/s41574-021-00547-8
  15. Moran, T. H., & Dailey, M. J. (2011). Intestinal feedback signaling and satiety. Physiology & Behavior, 105(1), 77–81. https://doi.org/10.1016/j.physbeh.2011.02.017
  16. Rehfeld, J. F. (2004). A centenary of gastrointestinal endocrinology. Hormone and Metabolic Research, 36(11–12), 735–741. https://doi.org/10.1055/s-2004-826177
  17. Tolhurst, G., Heffron, H., Lam, Y. S., et al. (2012). Short-chain fatty acids stimulate the release of gut hormones via the G-protein-coupled receptor FFAR2. American Journal of Physiology-Endocrinology and Metabolism, 302(4), E541–E549. https://doi.org/10.1152/ajpendo.00574.2011
  18. Lomenick, J. P., Melguizo, M. S., Mitchell, S. L., & Summar, M. L. (2009). Effects of low carbohydrate vs low fat ketogenic diet on appetite and hunger hormones. Journal of Pediatric Endocrinology and Metabolism, 22(11), 1053–1061. https://doi.org/10.1515/jpem.2009.22.11.1053
  19. Thomas, D. E., Elliott, E. J., & Baur, L. (2007). Low glycaemic index or low glycaemic load diets for overweight and obesity. The Cochrane Database of Systematic Reviews, 3, CD005105. https://doi.org/10.1002/14651858.CD005105.pub2
  20. Aziz, A. A., Kenney, L. S., Goulet, B., & Abdel-Aal, E. M. (2009). Glycemic index, glycemic load, and dietary fiber intake of foods commonly consumed in Canada. Journal of the American College of Nutrition, 28(6), 723–732. https://doi.org/10.1080/07315724.2009.10719791
  21. Slavin, J. L. (2013). Fiber and prebiotics: Mechanisms and health benefits. Nutrients, 5(4), 1417–1435. https://doi.org/10.3390/nu5041417
  22. Christensen, L., Roager, H. M., Astrup, A., & Hjorth, M. F. (2020). Microbial enterotypes and weight loss: results from a randomized controlled trial. Gut Microbes, 11(4), 855–866. https://doi.org/10.1080/19490976.2019.1701351
  23. Smith, M. I., Yatsunenko, T., Manary, M. J., et al. (2013). Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science, 339(6119), 548–554. https://doi.org/10.1126/science.1229000
  24. Sonnenburg, E. D., & Sonnenburg, J. L. (2014). Starving our microbial self: The deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metabolism, 20(5), 779–786. https://doi.org/10.1016/j.cmet.2014.07.003
  25. Zmora, N., Suez, J., & Elinav, E. (2019). You are what you eat: Diet, health and the gut microbiota. Nature Reviews Gastroenterology & Hepatology, 16(1), 35–56. https://doi.org/10.1038/s41575-018-0061-2
  26. Arcari, D. P., Bartchewsky, W. Jr., et al. (2011). Anti-inflammatory effects of yerba mate extract on colon carcinogenesis. Nutrition, 27(3), 327–333. https://doi.org/10.1016/j.nut.2010.02.003
  27. Bracesco, N., Sánchez, A. G., Contreras, V., Menini, T., & Gugliucci, A. (2011). Recent advances on Ilex paraguariensis research: Minireview. Journal of Ethnopharmacology, 136(3), 378–384. https://doi.org/10.1016/j.jep.2011.05.003
  28. Hursel, R., Viechtbauer, W., & Westerterp-Plantenga, M. S. (2009). The effects of green tea on weight loss and weight maintenance: A meta-analysis. International Journal of Obesity, 33(9), 956–961. https://doi.org/10.1038/ijo.2009.135
  29. Mao, Q. Q., Xu, X. Y., Cao, S. Y., et al. (2019). Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Food & Function, 10(8), 4371–4393. https://doi.org/10.1039/C9FO00866B
  30. Van Dam, R. M., & Hu, F. B. (2005). Coffee consumption and risk of type 2 diabetes. Journal of the American Medical Association, 294(1), 97–104. https://doi.org/10.1001/jama.294.1.97
  31. Wedick, N. M., Brennan, A. M., Sun, Q., et al. (2011). Effects of caffeinated and decaffeinated coffee on biological risk factors for type 2 diabetes: A randomized controlled trial. Nutrition Journal, 10(1), 93. https://doi.org/10.1186/1475-2891-10-93
  32. Noronha, M., Souza, M. R., et al. (2022). Allulose as a functional sugar substitute: Current status and future perspectives. Food Research International, 152, 110891. https://doi.org/10.1016/j.foodres.2021.110891
  33. Iida, T., Yamaguchi, T., et al. (2010). Effects of allulose on blood glucose and insulin levels in normal and diabetic rats. Bioscience, Biotechnology, and Biochemistry, 74(4), 641–645. https://doi.org/10.1271/bbb.90999
  34. Han, Y., et al. (2016). Allulose reduces body fat and improves lipid profile in humans. Journal of Functional Foods, 22, 327–334. https://doi.org/10.1016/j.jff.2016.01.034
  35. Hayashi, N., Iida, T., et al. (2010). Rare sugars suppress fat accumulation in mice. Nutrition, 26(6), 641–648. https://doi.org/10.1016/j.nut.2009.07.007
  36. Wadden, T. A., et al. (2021). Lifestyle intervention in patients with obesity and type 2 diabetes. The New England Journal of Medicine, 384(2), 121–131. https://doi.org/10.1056/NEJMoa2023961
  37. Drucker, D. J. (2018). Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metabolism, 27(4), 740–756. https://doi.org/10.1016/j.cmet.2018.03.001
  38. Wilding, J. P., Batterham, R. L., et al. (2021). Once-weekly semaglutide in adults with overweight or obesity. The New England Journal of Medicine, 384(11), 989–1002. https://doi.org/10.1056/NEJMoa2032183
  39. Heymsfield, S. B., & Wadden, T. A. (2017). Mechanisms, pathophysiology, and management of obesity. The New England Journal of Medicine, 376(3), 254–266. https://doi.org/10.1056/NEJMra1514009
  40. Mullins, R., & Chandalia, M. (2020). Sarcopenia and the effects of obesity and diabetes. Endocrinology and Metabolism Clinics, 49(2), 233–247. https://doi.org/10.1016/j.ecl.2020.03.007
  41. Perreault, L., et al. (2022). Post-treatment weight regain following discontinuation of GLP-1 receptor agonist therapy. Obesity, 30(12), 2316–2326. https://doi.org/10.1002/oby.23601
  42. Thomas, J. G., et al. (2014). Behavioral strategies for long-term weight loss maintenance. Obesity, 22(S1), S50–S59. https://doi.org/10.1002/oby.20818
  43. Lin, M. Y., et al. (2021). Electrolyte imbalance from GLP-1 agonists. Endocrine Practice, 27(3), 220–225. https://doi.org/10.1016/j.eprac.2020.10.002
  44. Henry, R. R., et al. (2020). Safety profile of semaglutide. Diabetes Therapy, 11(4), 835–846. https://doi.org/10.1007/s13300-020-00769-9
  45. Wolfe, R. R., & Miller, S. L. (2008). The danger of muscle loss during weight loss. The American Journal of Clinical Nutrition, 87(1), 155S–158S. https://doi.org/10.1093/ajcn/87.1.155S
  46. Vancampfort, D., et al. (2015). Risk of suicidality with GLP-1 drugs. Psychotherapy and Psychosomatics, 84(5), 254–258. https://doi.org/10.1159/000375515
  47. Wolf, A. M., & Colditz, G. A. (1998). Current estimates of the economic cost of obesity in the United States. Obesity Research, 6(2), 97–106. https://doi.org/10.1002/j.1550-8528.1998.tb00322.x